f(-5)=(1/3)^-5-3

Simple and best practice solution for f(-5)=(1/3)^-5-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for f(-5)=(1/3)^-5-3 equation:



f(-5)=(1/3)^-5-3
We move all terms to the left:
f(-5)-((1/3)^-5-3)=0
We add all the numbers together, and all the variables
f(-5)-((+1/3)^-5-3)=0
We multiply parentheses
-5f-((+1/3)^-5-3)=0
We multiply all the terms by the denominator
-5f*3)^-5-3)-((+1=0
Wy multiply elements
-15f^2+1=0
a = -15; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-15)·1
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{15}}{2*-15}=\frac{0-2\sqrt{15}}{-30} =-\frac{2\sqrt{15}}{-30} =-\frac{\sqrt{15}}{-15} $
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{15}}{2*-15}=\frac{0+2\sqrt{15}}{-30} =\frac{2\sqrt{15}}{-30} =\frac{\sqrt{15}}{-15} $

See similar equations:

| 9(2a+3)-30=3(3a+2) | | -19x=20x+-20x=19 | | 2x+21+2x-16=180 | | -4(-5x-3)=7 | | 2(6-2y)=-1((4y-9) | | -(-6x+3)-10x+11=-22 | | -1/3+3=x/6+3 | | 3x+127=6x175 | | j+4j=5 | | 15v+3v-3v+3v-17v=15 | | 4n–2=20 | | 4/5(q)=1 | | 4+3q=-3 | | -2x+8x+3-7=2 | | 2m-m+4m-3m=18 | | 8x−7x=6 | | 12w+3w-14w=7 | | -w+4(w+3)=-9 | | 11x+6=3x+26 | | 12-4x-5x=39 | | 8x-3+4x=2x+32 | | 33=7-4a | | 2x-3=5x—12 | | 12-4x-5x=9 | | 7-4a=33 | | 20x+4+3x-6+90=180 | | 65-y*2=35-4 | | 10–3.2nn=2 | | 8h+h−2h−h+4h=10 | | 18=9/5c+32 | | 16v+3v+2v-11v=20 | | 20x+4=3x-6 |

Equations solver categories